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Abstract

The depressurization of a vessel containing saturated or subcooled liquid may occur in a variety of industrial processes and often
poses a potentially hazardous situation. A 1D plane numerical model was developed for estimating the thermodynamic and the dynamic
state of the boiling liquid during a boiling liquid expanding vapor explosion (BLEVE) event. Based on the choice of the initial nucleation
sites density, the model predicts, simultaneously, the bubble growth processes in the liquid at the superheat-limit state, the front velocity
of the expanding liquid, and the shock wave pressure formed by the liquid expansion through the air.

Conditions of shock formation were found to be normally associated with high initial temperatures that can bring the liquid to its
superheat-limit state during the initial depressurization. Furthermore, the high initial temperature also induces a generation of higher
vapor pressures that forces a rapid mixture expansion.

Model predictions of the shock wave strengths, in terms of TNT equivalence, were compared against those obtained by simple energy
models. As expected, the simple energy models over predicts the shock wave strength. However, the simple model which accounts for the
expansion irreversibility, produces results which are closer to current model predictions.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Storage tank failure accidents may result from a sudden
rupture of a pressure vessel containing saturated or sub-
cooled liquid that initiates a blowdown transient release.
The most severe form of release is the boiling expanding
vapor explosion (BLEVE). It is usually associated with a
large explosive release of Pressure Liquefied Gasses
(PLG’s). The explosive part of the release is caused by a
very rapid phase change from liquid to vapor, and is char-
acterized by shock wave formations. A comprehensive
review on the exploration of the phenomenon could be
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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found in Leslie and Birk [1], and the case history in Lees
[2] (vol. 3).

Historically, the majority of the BLEVE accidents are
associated with a storage of flammable liquids such as pro-
pane and butane. Surrounding fire caused ignition, which
then propagated to a fireball. In a broad definition of a
BLEVE, as used by Klets [3] and Lees [2], it is assumed that
any liquefied vapor – flammable or non-flammable – can
cause a BLEVE.

Prugh [4] has reviewed the events that precede a BLEVE
accident. In the standard scenario, a tank of liquefied gas,
usually propane is engulfed in a fire. As the fire heats the
tank, the temperature and pressure of its fluid rise, roughly
through a saturation path (excluding temperature stratifi-
cation effects). The metallic vessel losses its strength
and eventually raptures, exposing its fluid to atmospheric
pressure. Being at a temperature well above its boiling
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Nomenclature

A cross-section area
~Ai interfacial area density
a speed of sound
C constant
CP specific heat constant pressure
CV specific heat constant volume
C± characteristic path
D=Dt material derivative
D�=Dt wave derivative
E internal energy
e specific internal energy of phase k

f force per unit volume
g gravitational acceleration
h convection heat transfer coefficient
hk specific enthalpy of phase k

hLG latent heat of evaporation
Ja Jakob number
kB Boltzmann’s constant
kk thermal conductivity of phase k

L0 initial liquid length
m Mass
mT overall mass in the vessel
mTNT mass of explosive (TNT)
mM mass of a molecule
M Mach number
nB bubble number-density
nd droplet number-density
Nu Nusselt number
P pressure
Pmin static pressure at the flashing inception point
PP particle path
q heat transfer rate
q00i;net heat diffusion rate from the liquid to the bubble
r distance
RB bubble radius
Rd droplet radius
RW rarefaction wave
s entropy
T temperature
t time
u velocity
v velocity relative to the shock wave
V volume

W work
Wflash expansion work
x coordinate
Z elevation
zSD scaled distance

Greek symbols

a volumetric void fraction
vflash quality at the end of flashing process
d parameter
DP under pressure undershoot
DP shock shock overpressure
ek void fraction of phase k

Ci;k mass transfer rate of phase k

c specific-heat ratio
q density
r surface tension
t specific volume
P dimensionless shock strength

Subscripts

air air
atm atmospheric conditions
B bubble
c thermodynamic critical conditions
G gas phase
i interfacial
k phase index (G = gas, L = liquid)
L liquid phase
m mixture
min flashing inception point
SL superheat-limit
sat saturation
Shock shock
sup superheat
w wall
0 initial value
1 infinity
1 side where the fluid enters the shock wave
2 side where the fluid leaves the shock wave

Superscript
00 area flux
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point, the superheated fluid boils rapidly and often
violently.

Few large and small-scale experiments were conducted to
study the BLEVE phenomenon. McDavitt et al. [5]
recorded the pressure response in a shock tube to study
the BLEVE initiation. Melhem et al. [6] performed BLEVE
experiments using a propane tanks. Venart et al. [7] reported
the possibility of another type of failure that is more power-
ful than the BLEVE. The event is a boiling liquid com-
pressed bubble explosion (BLCBE). Stawczyk [8]
described experiments with explosions of small LPG tanks.

Theories explaining the BLEVE are few in number and
rely on scarce data [1]. Reid [9] suggested that BLEVE’s are
essentially superheat explosions, and therefore can be pre-
dicted by superheat-limit considerations. The expansion of
a sufficiently superheated liquid is accompanied by a high
rate of microscopic vapor bubble formation. The extent
of superheat necessary for sustaining high rates of bubble
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formation can be determined from the homogeneous nucle-
ation theory, or alternatively by the superheat-limit tem-
perature, TSL. For a wide range of substances the ratio
between the superheat temperature at ambient pressure,
TSL(Patm), and the critical temperature, TSL(Patm)/Tc, lies
within the range 0.89–0.90.

BLEVE scenarios can be described by the super-heat
limit theory for certain conditions of liquefied gas vessels
depressurization [9]. Initially, prior to failure, the vessel
containing both vapor and liquid is at a saturated state.
Following the vessel failure, the depressurization process
takes place. Two possible depressurization processes from
the saturation line are illustrated in Fig. 1. If the depressur-
ization occurs at a relatively low temperature, correspond-
ing to point A, the pressure falls to the atmospheric
pressure B. Such depressurization may exhibit violent boil-
ing features. However, vapor explosion would not occur
since the superheat-limit (seen as a doted line) cannot be
reached. If depressurization occurs from a higher tempera-
ture, point C, the pressure would fall to point D. Here the
superheat-limit line is reached and a vapor explosion
occurs. In essence, it means that the liquid reaches the
superheat-limit prior to phase transition [10]. The super-
heat-limit temperature at atmospheric pressure is thus a
temperature threshold below which a superheated liquid
explosion cannot occur.

In support of this hypothesis Reid quotes experiments
by Anderson and Armstrong [11], as well as a number of
industrial accidents, as being consistent with the hypothe-
sis. His explanation is generally regarded as one of merit.
Subsequent work efforts by, Martinsen et al. [12], McDevitt
et al. [13], Davenport [14], Dunn [15] and Venart et al. [7]
also support the superheat-limit explanation. BLEVE’s
are usually form shock waves. However, there are no fully
validated models to predict those shock waves.

Yu and Venart [16] presented a preliminary physical and
mathematical model to describe the behavior of the
BLCBE. The simple numerical model computes the propa-
gation of, both, depressurization and compression waves
caused by mass discharge through cracks, and also calcu-
lates the rise of the liquid–vapor interface owing to void
generation.

Van den Berg et al. [17,18] presented a method to calcu-
late the blast effects originating from an exploding vessel of
Patm
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Fig. 1. Reid’s theory for BLEVE formation on schematic figure of vapor
saturation and superheat curves [9].
liquefied gas. The blast overpressure from a BLEVE was
numerically computed by imposing the vapor pressure of
a flashing liquid as boundary condition for the gas dynam-
ics code. This was done without any modeling of the flash-
ing process. Additionally, it was demonstrated that often,
reasonable estimates of BLEVE blast effects could be
obtained from simple expansion of acoustic volume source
considerations.

Deligiannis and Cleaver [19] presented a two-phase
model for the blowdown of a partially full vessel. They
used a simple model, consisting of the centered expansion
fan equations, to predict the average vapor pressure and
velocity of the vessel outflow.

The initial shock wave pressure and the blast effect are
usually evaluated in terms of energy parameters and
expressed as TNT equivalents [4,20]. The energy calcula-
tions are frequently based on the assumption of reversible
adiabatic expansion during the decompression from the
initial pressure to atmospheric pressure [4]. Planas-Cuchi
et al. [20] calculated the energy, based on a more realistic
assumption of irreversible adiabatic expansion.

The purpose of the current work was to develop a model
for estimating the thermodynamic and the dynamic state of
the boiling liquid during the BLEVE event. Based on the
choice of the initial nucleation sites density, the model pre-
dicts the bubble growth in the liquid at the superheat-limit
state. It addresses the front velocity of the expanding liquid
and the shock wave pressure formed by the liquid expansion
through the air. A novel model is given which describes the
coupling of two-phase flashing flow with compressible air-
flow. Model predictions were compared to the results of
the two TNT models. Such a 1D plane shock formation
and propagation can be associated with a BLEVE scenario
in a tunnel, or within any other type of cylindrical conduit.

2. The model

The BLEVE model is based on coupling two models for
one-dimensional plane unsteady flow: a model of expand-
ing two-phase mixture with compressible ideal gas (air)
flow model with or without shock waves. A convenient
description of the motion of air during a BLEVE is
through the ‘‘1D plane Piston Problem” simulation. The
piston is a representation of the front boundary of an
expanding two-phase mixture.

2.1. Model formulation

Consider a one-dimensional flow of air that is driven by
a rapid boiling expansion of a two-phase boiling mixture
behind it. The boiling is a consequence of the sudden expo-
sure of compressed high temperature liquid to atmospheric
pressure.

The BLEVE scenarios are initialized by a propagation
of a depressurization wave away from the break location
into the high-pressure liquid. The depressurization wave,
rarefaction wave, RW, propagates into the liquid at the



G.A. Pinhasi et al. / International Journal of Heat and Mass Transfer 50 (2007) 4780–4795 4783
liquid speed of sound. During its propagation, the com-
pressed fluid is depressurized to a level well below the sat-
urated pressure of the initial temperature (pressure-
undershoot). The penetration of a superheated fluid into
a metastable thermodynamic state triggers an extremely
fast process of vapor nucleation. The rapidity of the bubble
nucleation and growth processes is of substantial influence
on the blowdown and BLEVE scenarios [21].

The vigor vapor generation is the cause for the rapid
surge of the two-phase mixture volume. The acceleration
of the interface between the two-phase mixture and the
air is the reason for the compression of the air front. As
a result of the rapid acceleration, the contact surface veloc-
ity may reach the speed of sound in the air, thereby forcing
the development of a shock wave. The rate of acceleration
and the formation of the shock wave depend primarily on
the liquid initial thermodynamic state.

A schematic diagram of the process is shown in Fig. 2.
The initial state is depicted at the bottom of the figure.
The vessel wall separates the compressed liquid from the
ambient air. At time t = 0 the liquid is suddenly exposed
to the low ambient pressure and the rarefaction wave
expands into the liquid (to the left side). Whereas, both,
the mixture–air contact interface and the shock wave prop-
agate to the right. The figure reveals schematically the
expansion of all waves by there x ¼ f ðtÞ dependence. The
four regions characterizing the depressurization process
are indicated at near the top of the figure. Sequentially,
the regions are: compressed liquid, liquid–vapor mixture,
compressed air and undisturbed ambient air. The pressure
profile for the indicated intermediate expansion stage is
presented at the figure top.

The current model consists of two parts, one for the
two-phase mixture and the other for the air. The coupling
between the two regions takes place at the interface. The
Liquid
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Fig. 2. Typical wave action in the x� t plane a
latter is actually a common moving boundary for each of
the two domains. The possible presence of a shock wave
is accounted for in the model as a discontinuity within
the air domain. Viscous effects, such as in between phases
or at boundaries, are assumed to be negligible.

2.2. Two-phase model

The present two-phase flow analyses are based on the
equal velocities unequal temperatures (EVUT) model, for
which the existence of equal local pressure between phases
(i.e. P L ¼ P G ¼ P ), no slip conditions (i.e. uL ¼ uG ¼ u)
and no interfacial friction, (fi;k ¼ 0) are assumed. Accord-
ing to these assumptions, the one-dimensional conservation
equations (continuity, momentum and energy) reduce to:

o

ot
ekqk½ � þ o

ox
ekqku½ � ¼ Ci;k � ekqku

1

A
dA
dx

ð1Þ

q
ou
ot
þ qu

ou
ox
þ oP

ox
¼ �ðfw;L þ fw;GÞ � qg

dZ
dx

ð2Þ

ekqk
ohk

ot
þ ekqku

ohk

ox
þ ek

oP
ot
� eku

oP
ox
¼ qi;k þ qw;k þ fw;ku

ð3Þ

In these equations, the subscript k(L or G) denotes the
phase (liquid or vapor, respectively). The flow and liquid
properties ek, qk, uk, Pk and hk are the volume fraction, den-
sity, axial velocity, pressure and the specific enthalpy of
phase k, respectively. The source terms Ci;k, fw;k, qi;k and
qw;k are the mass transfer rate at the interface, wall friction,
interfacial heat transfer and wall heat transfer into phase k

per unit volume, respectively. Likewise, A is the cross-sec-
tion area of the duct, Z the elevation, g the gravitational
acceleration, and t and x are the time and the space inde-
pendent variables. The mixture density is given by
q ¼ eGqG þ eLqL and the void fraction is a � eG.
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nd the pressure profile following BLEVE.
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The set of equations is subject to the thermodynamic
state equation of each phase:

qk ¼ qkðP ; hkÞ ð4Þ
2.2.1. The constitutive equations

The constitutive equations for wall and interfacial heat
and mass transfer must be provided for closure. A simple
flow regime maps [22] is adopted which consists of bubbly
flow for void fractions less than 0.3, droplets flow for void
fractions larger than 0.7, and transition regime (churn tur-
bulent flow) for void fractions between 0.3 and 0.7. As cus-
tomary in the modeling of two-phase flashing flows and for
simplicity, it is assumed that the bubble growth is fully
thermally controlled (free of the initial inertia controlled
stage).

The rate of vapor generation is limited by the heat trans-
fer rate and interfacial area as:

Ci;GhLG ¼ qi;net ð5Þ

where hLG ¼ hG � hL is the latent heat and qi;net ¼ qiL � qiG

is the heat input from the liquid to the bubble–liquid inter-
face. The net interfacial heat flux, q00i;net and the net mass
flux _m00i are defined as

qi;net ¼ ~Aiq00i;net Ci;G ¼ ~Ai _m00i ð6Þ

where ~Ai is the interfacial area density (area per unit vol-
ume). The interfacial area density has to be determined
according to the two-phase flow regime. The source terms
of the governing equations, the evaporation rates and fric-
tion force terms, are all described by Pinhasi [23].

2.2.2. Bubbly flow regime
For bubbly flow, a < 0:3, it is assumed that all of bubble

nucleation sites are formed within a very short time during
the sharp depressurization. The growth of those bubbles
proceeds at a slower pace. Therefore it can be assumed that
the bubbles, having similar diameters, can be characterized
by an average size for any given cross-section (but varies
from one cross-section to another). For spherical bubbles,
the interfacial area density ~Ai is given by

~Ai ¼ 4pR2
BnB ð7Þ

where nB is the bubble number density and RB is the bubble
radius. Also

a ¼ 4

3
pR3

BnB ¼
1

3
~AiRB ð8Þ

so that

~Ai ¼
3a
RB

¼ ð36pnBÞ1=3a2=3 ð9Þ

The bubble growth is assumed to be heat diffusion con-
trolled. Therefore the heat supply to the bubble interface
can be expressed as

q00i;net ¼ hDT sup ð10Þ
where DT sup is the liquid superheat, DT sup ¼ T L � T satðP Þ
(the subscript ‘‘sat” indicates saturation).

The heat transfer coefficient, h, is taken from solutions
for the diffusion rate of heat transport from a liquid at a
constant superheat state to a bubble interface, which is

h ¼ kLNu
2RB

ð11Þ

The Nusselt number in this expression is a function of the
Jakob number, according to, [24]:

Nu ¼ 12

p
Ja 1þ 1

2

p
6Ja

� �2=3

þ p
6Ja

� �
ð12Þ

where the Jakob number is defined as

Ja � CP;LqLDT sup

qGhLG

ð13Þ

In this case, CP;L is the specific heat of the liquid, and hLG is
the latent heat. Eq. (12), in general is valid only for a uni-
form superheat and not for variable pressure fields [25].
However, it has been shown to be quite accurate for non-
uniform conditions, provided that local superheat values
are used [26].

For extensive superheat conditions, near the superheat-
limit (spinoidal), the rate of evaporation and condensation
of molecules at the vapor–liquid interface is governed by
statistical mechanics laws of transport and according to
[10] is

_m00i ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pmM1kBT
p ðP sat � P GÞ ð14Þ

where kB is the Boltzmann’s constant, and mM is the mass
of a molecule.
2.2.3. Churn-turbulent flow regime

For bubbly-droplets transition regime flow, 0:3 < a <
0:7, it is assumed that some of the bubbles coalesce and
form larger (Taylor) bubbles. If the void fraction exceeds
0.3, two opposing effects influence the surface area density.
On one hand, the continuing bubble growth, distortion of
their shape and bubble breakup tends to increase the area
density, ~Ai. On the other hand, the coalescence and forma-
tion of large bubbles tends to reduce ~Ai. The variation of ~Ai

with void fraction is small. It is therefore assumed that ~Ai

has a constant value corresponding to a ¼ 0:3, which
represents a geometric condition above which bubble coa-
lescence must take place. The heat flux and the heat trans-
fer coefficient for bubbly-droplets transition flow regime
were taken as for bubbly flow with a ¼ 0:3 using Eqs.
(10) and (11).
2.2.4. Droplets flow regime

For the case of transitional and dispersed droplet flows
a > 0:7, the heat and mass transfer occur on the liquid
droplets. The droplets are formed as a result of bubble
coagulation and droplet entrainment from the lateral
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surface of large Taylor bubbles. The interfacial area density
for those conditions is given by

~Ai ¼
3ð1� aÞ

Rd

ð15Þ

where Rd is the droplet diameter. For this case, the net
interfacial heat flux is

q00i;net ¼
kLNu
2Rd

ðT L � T GÞ ð16Þ

The Nusselt number is assumed to be constant at a value of
Nu = 16, as suggested by Solbring et al. [27]. The transition
to dispersed droplet flow, as previously mentioned, occurs
at a > 0:7 and has an interfacial area density of

~Ai ¼
3ð1� aÞ

Rd

¼ ð36pndÞ1=3ð1� aÞ2=3 ð17Þ

The variation with a, for simplicity is assumed to be sym-
metrical around a ¼ 0:5. Thus ~Ai � a2=3 if a < 0:3 (Eq.
(9)), and ~Ai � ð1� aÞ2=3 if a > 0:7.

2.3. Air model

The governing conservation equations for one-dimen-
sional unsteady compressible flow of gas are presented
[28,29]. The flow is considered as confined within a duct
of known cross-sectional area, AðxÞ. The continuity and
momentum equations for the flow are

oq
ot
þ 1

A
oðAqairuairÞ

ox
¼ 0

o

ot
ðqairuairÞ þ

1

A
o

ox
ðAqairu

2
airÞ þ

oP air

ox
¼ �fw;air

ð18Þ

where qair is the air density, uair is the air velocity, Pair is the
air pressure, whereas x and t are the independent variables
that denote the distance and the time, respectably. The
equation for isentropic conditions is

osair

ot
þ uair

osair

ox
¼ 0 ð19Þ

where sair is the entropy of the air. The isentropic assump-
tion states that there are no entropy changes for fluid
particle.

In the present model, the flow is considered as isentro-
pic. This assumption is not as restrictive as the assumption
of a homentropic flow. For isentropic flow, the entropy of
each fluid particle does not change with time, Eq. (19), but
the entropy of different fluid particles may be different,
rs 6¼ 0. Physically, this situation could be present in a fluid
that was initially with non-uniform entropy, or a fluid that
non-uniform entropy was caused by the passage of a
changing shock wave (variable strength with time). This
is in contrast with the homentropic assumption that states
that there are no entropy gradients in front and behind the
shock wave, i.e. Ds=Dt ¼ rs ¼ 0 within each domain.

The isentropic assumption implies that viscous dissipa-
tion and heat transfer effects are negligible. It is important
to note that no such assumption is made for the narrow
region occupied by the shock wave. There, explicitly, the
specific entropy undergoes a finite jump. Therefore analy-
ses of the shock wave region are conducted separately.

2.3.1. The shock wave
A shock wave is confined within a relatively thin region.

A normal shock wave separates two regions, one of sonic
velocity and the other of subsonic. The shock wave region
is referred to as a surface of discontinuity, across which
most of the fluid properties change. The model calculates
the conditions across the moving shock using the shock
relations.

It is convenient to conduct shock wave analyses with a
set of stationary coordinates relative to the shock wave.
The transformation of a moving shock wave into a station-
ary frame of reference is conducted according to
v1 � ushock � u1 and v2 � ushock � u2, where u is denotes
absolute fluid velocities, v is the fluid velocities relative to
the shock (directed to �x direction) and ushock the shock-
wave velocity. Side 1 is referred to the side where the fluid
enters a control volume (here the shock wave) and side 2 is
the side where the fluid leaves the control volume.

The shock Mach number defined as

M1n ¼
v1

a1

ð20Þ

where a is the air speed of sound. The flow properties, pres-
sure, velocity, density and Mach number behind the shock
wave ðP 2; v2; q2 ¼ 1=t2, M2n ¼ v2=a2Þ are represented in the
model in terms of the shock Mach number, M1n [28].

The shock properties that are presented are the shock
over-pressure and dimensionless shock strength, P, defined
as

P ¼ P 2 � P 1

q1a2
1

ð21Þ

where P 2 � P 1 is the shock pressure, q1 and a1 are the den-
sity and the speed of sound of the air low-pressure side of
the shock, respectively.

2.4. Coordinate systems

The model can be applied to 1D plane, cylindrical or
spherical flow. Expanding the continuity and momentum
equations for both regions and noting that the cross-sec-
tional area A depends only on space coordinate x, the area
derivative can be written as

1

A
dA
dx
¼ d

x
ð22Þ

where d is parameter for the coordinate system: For 1D
plane case d = 0, or for the cylindrical flow in which the
space coordinate is the distance from the axis and the
velocity is directed away from (or toward) the axis d = 1,
and for spherical flow in which the space coordinate is
the distance from one point, chosen as the origin, and the
velocity is directed away from (or toward) this point d = 2.
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2.5. Initial and boundary conditions

The initial conditions of interest in the present study are
those of either subcooled or saturated liquids with a uni-
form pressure (P0) and temperature (T0). The ambient air
is initially at rest (uair ¼ 0) with standard atmospheric pres-
sure and temperature, P air;0; T air;0.

The boundary conditions are as followed. At the left
end, (x = 0), the fluid is stationary (u = 0); At the mix-
ture/air interface, x ¼ LðtÞ, continuity of pressure and
velocity exist across the interface, i.e. P m ¼ P air, and
um ¼ uair; and at far right hand side end, x ¼ 1, the air is
stationary and undisturbed, i.e. uair ¼ 0 and P air ¼ P atm.

t < 0 0 6 x 6 L0 Liquid P m ¼ P 0; T m ¼ T 0;

a ¼ 0; um ¼ 0

x > L0 Air P air ¼ P air;0; T air ¼ T air;0;

uair ¼ 0

t ¼ 0 x ¼ L0 Contact P m ¼ P air; um ¼ uair ¼ 0

t > 0 x ¼ 0 Liquid oP m

ot ¼
oT m

ot ¼ 0; um ¼ 0

x ¼ L0 � aLt RW P m ¼ P min; um ¼ 0;

nB ¼ nB;0; RB ¼ RB;0;

x ¼ LðtÞ Contact P m ¼ P air; um ¼ uair

x!1 Air P air ¼ P air;0; T air ¼ T air;0;

um ¼ 0

ð23Þ

At time zero, the liquid at one end ðx ¼ L0Þ, is exposed
to the ambient atmospheric pressure, where L0 is the initial
liquid length. As a result, a rarefaction wave, RW, propa-
gates into the liquid at the liquid speed of sound, aL. In the
depressurization process the fluid drops to a minimum
pressure Pmin. This minimum can be, either, the pressure-
undershoot ðDP under ¼ P satðT 0Þ � P minÞ, calculated accord-
ing to the flashing inception model of Elias and Chambre
[30] for the case of T 0 < T STðP 0Þ, or the spinoidal-line inter-
sect corresponding to the superheat-limit, for T 0 > T STðP 0Þ
(Fig. 1).

The expansion of a saturated liquid is characterized by
the formation of a bubbly two-phase mixture. At relatively
low initial temperatures, the value of the initial bubble
number-density was chosen so as to support the pressure-
undershoot predicted by the pressure-undershoot model
of Elias and Chambre [30] (see [31]). The initial number
density of the bubble nucleation sites, nB;0 is a function of
the initial temperature and is taken from published recom-
mended values: 108–1012 m�3 as a function of Pmin [30].

On the other hand, at higher initial temperatures, condi-
tions should produce a pressure-undershoot that gets to the
superheat-limit. Thus the chosen initial bubble number-
density was the maximum one, nB;0 ¼ 1012 [10]. For condi-
tions that leads to the superheat limit, nB;0 ¼ 1012 m�3.

The initial bubble radius was taken as the bubble
critical size at the minimum pressure state (RB;0 ¼
r/(P satðT 0Þ � P minÞ, where r is the liquid surface tension.
3. The numerical solution

The equations of motion of a rapidly expanding two-
phase flow are non-linear and hyperbolic. They also exhibit
wave propagation features. Therefore, a numerical scheme
that incorporates the method of characteristics to solve the
governing equations was developed.

3.1. Characteristic form of equations of motion

After applying the method characteristics analysis to the
conservation equations of fluid motion, one can get two
types of characteristic directions: a set of characteristic
curves dx=dt ¼ u� a, that is called ‘‘waves”, and a set of
characteristic curves dx=dt ¼ u that is called ‘‘streamlines”.
The derivative-operators correspond to these characteristic
curves are the standard material derivative D=Dt and the
wave derivative D�=Dt:

D

Dt
� o

ot
þ u

o

ox
D�

Dt
� o

ot
þ ðu� aÞ o

ox
ð24Þ

where a is the speed of propagation of a small disturbance
in the fluid, i.e., the speed of sound.

a2 ¼ oP
oq

� �
s

ð25Þ

The derivative operators Dþ=Dt and D�=Dt represent the
time rate of change for observer traveling at velocities
u� a, that is, with a positive C+ or negative C� sound
wave. The curves of the waves C+, C� and particle-path
PP, appear as lines on the x� t diagram, and known as
characteristics lines or simply characteristics.

3.2. Characteristic form of the EVUT equations

The characteristic form of the EVUT equations is
obtained from a linear combination of the governing equa-
tions (1)–(3) and the equation of state (4), as [32]:

DþP
Dt
þ qa

Dþu
Dt
¼ qa2C1 þ aC2

D�P
Dt
� qa

D�u
Dt
¼ qa2C1 � aC2

Dþa
Dt
� að1� aÞ 1

qLa2
L

� 1

qGa2
G

� �
DþP
Dt
¼ C3

DhG

Dt
� 1

qG

DP
Dt
¼ C4

DhL

Dt
� 1

qL

DP
Dt
¼ C5

ð26Þ

The mixture speed of sound that was found by using the
characteristics analysis, is

a�2 ¼ q
a

qGa2
G

þ 1� a
qLa2

L

� �
ð27Þ

where the speed of sound of each phase is

a�2
k ¼

oqk

oP
þ 1

qk

oqk

ohk
ð28Þ
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The Ci are given by

C1 ¼
1

qG

� 1

qL

� �
Ci;G � u

1

A
dA
dx
� a

qG

oqG

ohG

C4 �
ð1� aÞ

qL

oqL

ohL

C

C2 ¼ �ðfw;L þ fw;GÞ � qmg
dZ
dx

C3 ¼
qm

qLqG

Ci;G � að1� aÞ 1

qG

oqG

ohG

C4 �
1

qL

oqL

ohL

C5

� �

C4 ¼
qi;G þ qw;G þ fw;Gu

aqG

C5 ¼
qi;L þ qw;L þ fw;Lu

ð1� aÞqL

ð29Þ

The corresponding characteristic and compatibility rela-
tions are

Cþ: dx ¼ ðuþ aÞdt; dP þ qadu ¼ ðqa2C1 þ aC2Þdt

C�: dx ¼ ðu� aÞdt; dP � qadu ¼ ðqa2C1 � aC2Þdt

PP: dx ¼ udt; da� að1� aÞ 1

qLa2
L

� 1

qGa2
G

� �
dP ¼ C3 dt

PP: dx ¼ udt; dhG �
1

qG

dP ¼ C4 dt

PP: dx ¼ udt; dhL �
1

qL

dP ¼ C5 dt

ð30Þ
3.3. Characteristic form of the Isentropic flow equations in

the air phase

The assumption for the existence of isentropic condi-
tions is (19):

Dsair

Dt
¼ 0 ð31Þ

In general, two thermodynamic properties are required to
define a thermodynamic state, e.g., select q ¼ qðP ; sÞ, thus

Dq
Dt
¼ oq

oP

� �
s

DP
Dt
þ oq

os

� �
P

Ds
Dt

ð32Þ

Combining Eqs. (31), (32) and (25) yields

Dq
Dt
¼ 1

a2

DP
Dt

ð33Þ

Therefore, the two thermodynamic properties that would
appear in the characteristic equations are the pressure
and the density. The equations of motion are written for
isentropic conditions in characteristic form as:

DþP air

Dt
þ qairaair

Dþuair

Dt
¼ qa2

airC6 þ aairC7

D�P air

Dt
þ qairaair

D�uair

Dt
¼ qa2

airC6 � aairC7

Dqair

Dt
� 1

a2
air

DP air

Dt
¼ 0

ð34Þ
The Ci are given by

C6 ¼ �uair

1

A
dA
dx

C7 ¼ �fw;L

The characteristic and compatibility relations are

Cþ: dx ¼ ðuair þ aairÞdt;

dP air þ qairaair duair ¼ ðqaira
2
airC6 þ aairC7Þdt

C�: dx ¼ ðuair � aairÞdt;

dP air � qairaair duair ¼ ðqaira
2
airC6 � aairC7Þdt

PP: dx ¼ uair dt; dP air � a2
air dqair ¼ 0

ð35Þ

There are three characteristics (waves C+, C� and the par-
ticle path PP) with three corresponding equations. Exclud-
ing very special cases, this set of equations can only be
solved numerically.

3.3.1. The shock formation

The formation of the shock is examined on the base of
the characteristic analysis. At a non-uniform flow field
the advanced information waves C+ exhibit characteristics
that either converge or diverge. The formation of a shock
wave is attributed to the intersection of two characteristic
lines [28].

3.4. The solution procedure

A numerical-solution method based on the method of
characteristics was employed for the investigation of the
BLEVE problem. The method is used for the solution of
the governing equations for unsteady one-dimensional of
two-phase flow as well as for the airflow, derived at the pre-
vious sections. The method of characteristics was also
employed to study and define the location of the shock
wave and to calculate the fluid particle path and properties
passing the shock wave. For this purpose, a special numer-
ical scheme was derived [23].

The procedure is employed for the numerical integration
of the characteristic and compatibility equations, using an
explicit numerical scheme. Expanding grid spacing is utilized
for the BLEVE problem, based on particle-path tracing
algorithm where constant time intervals, Dt, are used [33].
4. The comparison procedure of the model against TNT

models

The BLEVE’s shock wave pressure and the blast effect
are usually presented in terms of energy in the form of
TNT equivalents [4,20]. The energy calculations are based
on the assumption that adiabatic expansions of the content
take place, as the pressure decreases from the initial pres-
sure toward the ambient atmospheric pressure. Details of
the energy and the TNT equivalence models are presented
in Appendix A.
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These models are essentially empirical, and are actually
the only practical model available. To express the released
energy, W flash; in terms of equivalent kilograms of TNT
(where the specific explosion TNT energy was taken as
4650 kJ/kg [4]) the following conversion relationship was
used: mTNT [kg-TNT] = 24.1 � 10�3� mflash [kJ].

The principal parameter of a blast wave from an explo-
sion is the side-on overpressure, DP shock, in the far field.
Therefore this parameter constitutes the basis for the
equivalent TNT explosion. The values of the side-on over-
pressure for TNT explosions in free air are correlated as a
function of the scaled distance, zSD (Appendix A).

The cubic root index in the scaling law originates from
the energy radial expansion with a volumetric expansion
that is proportional to third power of the radius. To ana-
lyze the results of the current one-dimensional plane expan-
sion model, the pertinent scaling law is defined as

zSD ¼
r

mTNT

ð36Þ

where r is the distance [m], mTNT is the mass of explosive
(TNT) [kg-TNT] and zSD is the modified scaled distance
[m/kg-TNT].

The blast correlation is given in Fig. 7, and is referred to
as TNT curve [2]. The numerical results of the model were
analyzed using blast wave scaling and TNT curves to find
the equivalent mass of TNT of a particular BLEVE
scenario.

The numerically calculated shock wave overpressure at a
certain distance was used for locating the corresponding
scaled distance from the TNT curve. Setting the scaled dis-
tance in Eq. (36), for the Cartesian one-dimensional prob-
lem, the equivalent mass of TNT was found. The latter was
then compared to the equivalent mass of TNT that was
obtained from the energy models [4,20]. Obviously, in all
these one-dimensional analyses, parameters such as mass
and energy are calculated per unit area.

5. Results

The current model was employed to study the condi-
tions that could lead to a boiling liquid expanding vapor
explosion (BLEVE) and its possible consequences. The
model was utilized to predict the behavior of the shock
wave formed by the liquid–vapor two-phase mixture 1D
plane expansion in air.

The results of the numerical calculations for the expan-
sion with water as a working material are presented.
Finally, the current model predictions are compared to
those of simple energy models. The comparison is based
on TNT equivalence model.

5.1. Model validation

The predictions of the BLEVE numerical model were
first analyzed for the two well-known cases. The two-phase
model was tested against experimental results of blowdown
case, i.e. flashing flow through a channel. The blowdown
problem was studied through a finite channel for various
initial and boundary conditions, and was tested success-
fully against two sets of experimental data [31].

Likewise, the BLEVE model results were analyzed for
the particular case of an expanding gas (a shock-tube prob-
lem) [33]. The results were successfully compared against
two exact analytical solutions for two standard test prob-
lems. For such events, the model calculates and determines
both the shock wave position and the pressure differential
across it.

5.2. BLEVE problem

After code validation with an expanding gas, the
BLEVE model was used to analyze the rapid depressuriza-
tion characteristics of a liquefied gas.

5.2.1. BLEVE: Semi-infinite regions

The case studied is of two semi-infinite regions of com-
pressed water in contact with air. The model was applied to
study effects of different initial temperatures on the flow
response including the formation of shock waves. The ini-
tial thermodynamic conditions were those of saturated
water.

Profiles of the flow properties evaluation during BLEVE
for two cases are presented for three different times. The
first results are for a relatively low initial temperature,
T 0=T c ¼ 0:70, and nB,0 = 3 � 107 m�3 (Fig. 3). Then,
results are presented for a high initial temperature,
T 0=T c ¼ 0:95, and nB,0 = 1012 m�3 (Fig. 4). In these figures,
the pressure, velocity, velocity of sound and Mach number,
are plotted as a function of the position x, where x = 0 is
the initial location of the initial the water/air boundary.

Behind the rarefaction wave the mixture pressure
increases owing to vapor generation. For relatively low ini-
tial temperature (Fig. 3), the pressure buildup increases
above the rarefaction wave pressure, but not enough to
form a shock wave. For high initial temperatures (Fig. 4),
the pressure buildup is substantial, but does not exceed
the rarefaction wave pressure (the latter coincides with
the spinoidal). That buildup however is powerful enough
to form a shock wave. Notice that the expansion from
low-pressure conditions produces a local minimum with a
subsequent net pressure buildup, owing to rapid bubble
growth. However, that growth is comparatively weak to
produce a net pressure buildup when the expansion is from
high-pressure conditions. Nonetheless, it noticeably slows
down the depressurization rate.

If the failure occurs under the condition of a relatively
low initial temperature (Fig. 3), the depressurization is
characterized by rapid boiling. The contact surface velocity
between vapor and air is well below values that are
required for shock wave formation. In contrast, failures
occurring at high initial temperatures cause rapid depres-
surizations that could lead to explosions and shock wave
formation (Fig. 4). At high initial temperatures the ‘‘expan-



Fig. 3. Flow properties evaluation for T 0=T c ¼ 0:70 and nB;0 = 3 � 107 m�3.
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sion fan” region contains a moving sonic point u ¼ a at
x = 0 (Fig. 4). Beyond this region, both, the two-phase
mixture and the air (near the contact surface) are super-
sonic.

Applying the model to test the effects of various initial
temperatures revealed that shock wave formation occurs
at temperatures higher than T 0=T c � 0:90. Shock strength
time histories are presented in Fig. 5 for various initial
temperatures.

It was found that, shortly after formation, the shock
strength increases rapidly with time, and thereafter
increases gradually. The shock wave strengthens with time
owing to continuous vapor generation. This is in contrast
to the characteristics of the expanding air where the shock
wave strength reaches a constant value after a short accel-
eration stage. Notice that higher initial temperatures pro-
duce stronger shock waves.

The formation of the shock at T 0=T c ¼ 0:90 occurs after
� 1:5 ms. At higher initial temperatures, the shock forma-
tion begins slightly sooner, nonetheless its inception begins
essentially after a period of approximately 0.5 ms. (neces-
sary for the material particles acceleration).

5.2.2. BLEVE formation

The results of the present numerical model seemed to be
consistent with Reid’s hypothesis. The formation of the
BLEVE was found to occur at the initial temperature pre-
dicted by Reid. This is impressive of great consequence



Fig. 4. Flow properties evaluation for T 0=T c ¼ 0:95 and nB;0 = 1012 m�3.
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since the present results are based on the numerical solu-
tion of the process dynamics and not merely on thermody-
namic ad-hoc considerations. The model results show that
the BLEVE is formed at these high temperatures by the
combined influence of high nucleation site number density
and high vapor pressure.

In contrast with gas shock wave tube problem, an ana-
lytical solution for the BLEVE problem is highly complex
since the characteristic lines are no longer of constant val-
ues (such as in ideal gas case). The two-phase characteristic
equations are changing with time along the characteristic
lines. The analysis of the ‘‘expansion fan” region for a
two-phase boiling mixture requires integration of the equa-
tions along these lines. This was accomplished numerically
by the current model.
5.3. Comparison the numerical results with the energy models

In this section, the model addresses the case of a finite
liquid region, such as a liquid body in a vessel. Predictions
of the model are compared against results of a simple
energy models. The comparison is based on TNT equiva-
lence model.

The calculation of the TNT equivalence of the numerical
results is based on calculating the shock wave overpressure
at a certain distance from the explosion site. This was done
for a given vessel length of compressed liquid at a specified
temperature.

The BLEVE model was applied to study effects of the
initial temperature on the blast wave characteristics at the
far field. For a liquid length of 0.05 m, the model was



Fig. 5. Shock wave strength history during BLEVE for various initial temperatures.
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applied for two initial temperatures, T 0=T c ¼ 0:90 and
T 0=T c ¼ 0:95. The calculated shock intensity as a function
of distance is presented in Fig. 6, for the two initial temper-
atures. The shock properties that are presented are the
shock over-pressure and the dimensionless shock strength,
P. The shock wave has a profile in which the pressure rises
sharply to a peak value and then gradually tails off. The
shock strength parameters decay with distance.

For the distance of 20 m, a comparison of results
between those of the present model and the energy model
was made. The comparison is based on calculation of the
TNT equivalence for both models. The comparison is sum-
marized in Table 1 for the two initial temperatures.
Fig. 6. Shock wave dissipation with distance d
Relatively large differences were found between the
numerical model and the reversible energy model predic-
tions. However the comparison against the irreversible
energy model revealed a much closer match. For T 0=T c ¼
0:90, the numerical prediction was 0.38 [kg-TNT/m2] the
reversible energy model [4] prediction was 1.68 [kg-TNT/
m2] and the irreversible energy model [20] prediction was
0.66 [kg-TNT/m2]. For T 0=T c ¼ 0:95, the numerical predic-
tion was 0.44 [kg-TNT/m2], the reversible energy model [4]
prediction was 1.43 [kg-TNT/m2] and the irreversible
energy model [20] prediction was 0.69 [kg-TNT/m2].

The simple energy models tend to over-estimate the
BLEVE consequences as compared to the numerical model
uring BLEVE for two initial temperatures.



Table 1
TNT equivalence at distance of 20 m for initial liquid length L0 ¼ 0:05 m

Initial temperature T0/Tc – 0.90 0.95

Numerical results

Shock strength P – 2.75 3.44
Pressure jump DP shock [MPa] 0.39 0.48
Scaled distance ZSD [m/kg] 45 52
TNT equivalence mTNT [kg-TNT/m2] 0.38 0.44

Energy model – reversible (Prugh’s model [4])

Expansion energy Wflash [kJ/m2] 7845 6677
TNT equivalence mTNT [kg-TNT/m2] 1.68 1.43

Energy model – irreversible (Planas-Cuchi’s model [20])

Expansion energy Wflash [kJ/m2] 3080 3238
TNT equivalence mTNT [kg-TNT/m2] 0.66 0.69
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results. The major reason for this discrepancy lies in the
difference of the vapor formation mechanisms that
the models are based on. According to the energy model,
the liquid flashes instantaneously and the entire vapor is
formed prior to the expansion. Furthermore, the vapor is
assumed to be at the initial vapor pressure. However, in
the actual case, there is a continuous process of vapor
formation during expansion. Therefore the initial pressure
of the newly generated vapor is smaller than the vessel
initial pressure.

Note that the characteristics of the blast from the explo-
sion of TNT charge are significantly different from those of
other explosions. To substantiate that, consider that the
pressure developed by a TNT explosion, while still in con-
finement within its initial boundaries, is on the order of half
a million bar. This is well in excess of what could be expe-
rienced in a BLEVE. The latter energy develops more grad-
ually and is spread over a much larger scale.

Comparing the profile of the peak overpressure from a
TNT explosion with that from a BLEVE explosion, both,
in the near field and in the far fields, the peak overpressure
of the TNT explosion is higher. One consequence of this is
that the use of the energy model is over-predicting the risks.
6. Conclusions

In the current study, a 1D plane numerical model was
developed for estimating the thermodynamic and the
dynamic state of the boiling liquid during a BLEVE event.
Based on the choice of the initial nucleation sites density,
the model predicts, simultaneously, the bubble growth pro-
cesses in the liquid at the superheat-limit state, the front
velocity of the expanding liquid, and the shock wave pres-
sure formed by the liquid expansion through the air. A
novel model is given which describe the coupling of two-
phase flashing flow with compressible airflow.

The simple energy model tends to over-estimate the
BLEVE scenario consequences as compared to numerical
model predictions. Relatively large differences were also
found between the numerical model and the reversible
energy model predictions. However, the irreversible energy
model predictions matched much closer the numerical
model results.

The study reveals what are the important mechanisms
that dominate two-phase blowdown and BLEVE accidents.
The model reveals the characteristics of a BLEVE scenario
in a tunnel, or within any other type of cylindrical conduit.
The developed models enable calculations of the required
input data necessary for running contaminants dispersion
codes. They are therefore important computational tools
for environmental safety assessments.
Appendix A. Energy models

TNT equivalent models are frequently used to scale var-
ious types of explosions. The modeling is based on estimat-
ing the energy of the explosion, calculating the TNT
equivalent and then treating the explosion as if it was
one from a TNT charge.

In the current appendix a simple energy models for a
BLEVE scenario and blast wave parameters are presented.
The energy of expansion and the blast wave parameters
were used in terms of TNT equivalents. This approach
was used as a first order evaluation and validation of the
numerical results.
A.1. BLEVE energy model: Reversible

During a BLEVE explosion, the mechanical energy con-
tained inside a bursted vessel is suddenly released. The sub-
stance contained in the vessel instantaneously increases in
volume due to expansion of the vapor already existing in
the vessel at the moment of the explosion and to the partial
vaporization – practically instantaneous (flash) – which the
superheated liquid undergoes. This expansion will give rise
to a pressure wave (blast).

An expression for calculating the energy released during
an adiabatic and reversible (isentropic) expansion
(PV c ¼ constant) of gas from a volume V0 and pressure
P0 to atmospheric pressure P atm is [4]:

W flash ¼
Z

P dV ¼ P 0V 0

c� 1
1� P atm

P 0

� �c�1
c

" #
ð37Þ

where c is the specific heat ratio c ¼ CP /CV. (for water va-
por c ¼ 1:32).

To estimate the energy released from the rupture of a
liquefied gas container, the weight of liquid that flashes
to vapor during depressurization to atmospheric pressure
is estimated. The volume of the released vapor, at the initial
container pressure, is comprised of the flash vapor and the
vapor contained within the initial container free space,
which is

V 0 ¼ V G þ V L vflash

qL

qG

� �
ð38Þ
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where vflash is the flashing fraction (the mass fraction of the
liquid that vaporized), VL and VG are the initial liquid vol-
ume and the initial vapor volume, respectively.
A.1.1. Flashing fraction

The sudden pressure drop around a subcooled liquid
triggers a flashing process followed by an adiabatic expan-
sion of the released vapor cloud. The flashing fraction is
obtained from the following energy balance

hLG dmG ¼ CP;L dT ð39Þ

The dependence of the latent-heat and specific-heat on tem-
perature are,

hLG

hLGð Þ0
¼ T c � T

T c � T 0

� �0:38

;
CP;L

CP;Lð Þ0
¼ T c � T

T c � T 0

� ��0:24

ð40Þ

where T0 is a reference temperature and Tc is the critical
temperature [4]. The expression for the latent-heat is
known as Watson relation.

From the integration of the energy balance (39), from T0

to the boiling temperature at atmospheric pressure Tb, an
expression for the flashing fraction is obtained

vflash ¼ 1� exp �2:63
CP;L

hLG

� �
ðT c � T bÞ 1� T c � T 0

T c � T b

� �0:38
" #( )

ð41Þ

In this equation the term ðCP ; LhLGÞðT c � T bÞ is the vapor-
ization factor (equals 0.51 for water).
A.2. BLEVE energy model: Irreversible

Planas-Cuchi et al. [20] proposed a new approach, which
is based on – more realistic – assumption of an adiabatic
and irreversible expansion process. The irreversible expan-
sion work is �P1DV , where P1 is the pressure just after
the expansion (usually P atm) and DV being the variation
in volume of the whole content of the vessel when it
changes from the explosion state to the hypothetical final
state. On the other hand, for adiabatic process, this work
must be equal to the variation in internal energy of the ves-
sel content DE:

W flash ¼ �P1DV ¼ DE ð42Þ

Taking into account the mass and energy balances, the
above equation is

� DE ¼ ðeL � eGÞmTv� mTeL þ E0 ð43Þ
P1DV ¼ P1½ðtL � tGÞmTv� mTtL þ V 0� ð44Þ

where eL, eG are the internal energy at the final state of the
liquid and the vapor respectively, tL, tG are the specific vol-
ume at the final state of the liquid and the vapor respec-
tively, v is the quality at the final state, mT is the overall
mass in the vessel, V0 and E0 are the initial volume and
internal energy respectively. From these two equations,
x ¼ mTP1vL � V 0P1 þ mTuL � E0

ðuL � uGÞ � ðvG � vLÞP1½ �mT

ð45Þ

By substitution the value of x in (43) or (44) the Wflash is
found.

A.3. Blast wave

One of the main effects of an explosion is the creation of
a shock wave, or a blast wave. This blast wave is in effect a
traveling hazardous overpressure wave that could injure
people and damage equipment and buildings.

In the current section the blast wave scaling law and the
blast overpressure correlation are presented. These param-
eters are used to analyze the numerical results, in terms of
TNT equivalents.

A.3.1. Energy of explosion of TNT

The values used for the explosion energy of TNT lie in
the range 4140–4650 kJ/kg-TNT [2]. The specific explosion
TNT energy is commonly taken as 4650 kJ/kg [4].

A.3.2. TNT curve

The blast characteristics of a TNT explosion are often
used in the modeling of other types of explosion. There is
much more available information on explosions of explo-
sives, particularly TNT, than on explosions of other mate-
rials (for instance, such as for vapor explosions).

The principal one parameter of the blast wave from
TNT explosion is the side-on overpressure, DP shock, in the
far field. The values of this parameter are presented as a
function of the scaled distance, for a free air burst (spher-
ical symmetry). The blast correlation is given in Fig. 7,
called TNT curve [2]. The curve utilizes a damage classifi-
cation based on the damage to dwelling houses in the Sec-
ond World War.

A.3.3. Blast scaling

The characteristics of the blast wave produced by an
explosion are generally determined by the application of
the scaling laws [2]. For the blast wave caused by explosion,
the scaling relationship most widely used is the ‘cube root’
law. This law states that when two charges of the same
explosive material and geometry but of different size are
detonated in the same atmosphere, self-similar shock waves
are produced at the same-scaled distances. The scaled dis-
tance is defined as

zSD ¼
r

m1=3
TNT

ð46Þ

where r is the spatial distance, mTNT is the mass of explosive
and zSD is the scaled distance. It should be noted that the
scaled distance is not dimensionless.

Strictly the relevant scaling variable is the energy W flash;
rather than the mass of explosive mTNT. But for particular
explosive it is commonly assumed that the energy released
is proportional to the explosives mass.
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The cube root index in the scaling law is related to the
fact that the energy is deposited into a spherical, or hemi-
spherical, region, the volume of which varies with the cube
of the radius. To analyze the results for the one-dimen-
sional plane expansion problem, the pertinent scaling
law, for evaluating the numerical model, was defined as

zSD ¼
r

mTNT

ð47Þ

Obviously in those analyses, parameters such as mass and
energy are calculated per unit area.
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